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Variance-based SEM, also known under the term partial least squares (PLS) analysis, is an approach that has
gained increasing interest among marketing researchers in recent years. During the last 25 years, more than
30 articles have been published in leading marketing journals that have applied this approach instead of the
more traditional alternative of covariance-based SEM (CBSEM). However, although an analysis of these
previous publications shows that there seems to be at least an implicit agreement about the factors that
should drive the choice between PLS analysis and CBSEM, no research has until now empirically compared
the performance of these approaches given a set of different conditions. Our study addresses this open
question by conducting a large-scale Monte-Carlo simulation. We show that justifying the choice of PLS due
to a lack of assumptions regarding indicator distribution and measurement scale is often inappropriate, as
CBSEM proves extremely robust with respect to violations of its underlying distributional assumptions.
Additionally, CBSEM clearly outperforms PLS in terms of parameter consistency and is preferable in terms of
parameter accuracy as long as the sample size exceeds a certain threshold (250 observations). Nevertheless,
PLS analysis should be preferred when the emphasis is on prediction and theory development, as the
statistical power of PLS is always larger than or equal to that of CBSEM; already, 100 observations can be
sufficient to achieve acceptable levels of statistical power given a certain quality of the measurement model.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since Jöreskog's (1967) seminalwork onmaximum likelihood factor
analysis and its later extensions to the estimation of structural equation
systems (Jöreskog, 1973), structural equation modeling (SEM) has
become one of the most important methods of empirical research,
which has been applied in a multitude of areas including psychology
(MacCallum & Austin, 2000), management research (Williams,
Edwards, & Vandenberg, 2003), and marketing (Baumgartner &
Homburg, 1996). For many researchers, applying SEM is equivalent to
carrying out a maximum-likelihood, covariance-based analysis using,
for example, the LISREL software (Jöreskog & Sörbom, 1982). Such
covariance-based SEM (CBSEM) focuses on estimating a set of model
parameters so that the theoretical covariance matrix implied by the

system of structural equations is as close as possible to the empirical
covariance matrix observed within the estimation sample. When
carried out usingmaximum likelihood (ML)or generalized least squares
(GLS), this estimation requires a set of assumptions to be fulfilled, such
as the normal distribution of observed indicators and sufficient sample
size. If these assumptions are violated, nontraditional alternatives to
SEM, such as partial least squares (PLS, see, e.g., Rigdon, 2005; Wold,
1975), appear to be preferable options for researchers. Unlike CBSEM, a
PLS analysis does not work with latent variables but rather with block
variables, and estimates model parameters to maximize the variance
explained for all endogenous constructs in themodel through a series of
ordinary least squares (OLS) regressions. It does not require any
distributional assumptions to be fulfilled but results in inconsistent
parameter estimates if the number of indicators per construct and the
sample size are not infinitely large (Wold, 1975).

According to Fornell andBookstein (1982), thedifferent objectivesof
CBSEMandPLSmay result in different parameter estimates for the same
structural model in any given situation, which makes the choice
between these two approaches “neither arbitrary nor straightforward.”
Previous research highlights three differences between CBSEM and PLS
that canbeused to guide this choice. First, parameter estimation inPLS is
essentially carried out by a sequence of OLS regressions, which implies
that no assumptions regarding the distribution ormeasurement scale of
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observed indicators are required. In contrast, ML- or GLS-based CBSEM
require normally distributed and interval-scaled variables (e.g., Dijkstra,
1983; Fornell & Bookstein, 1982). In addition, the use of OLS estimation
also implies that PLS even works with small sample sizes, whereas ML-
or GLS-based CBSEM usually require at least 200 observations to avoid
non-convergence and improper solutions (Boomsma & Hoogland,
2001). Second, PLS focuses on maximizing the variance explained for
all endogenous constructs in themodel,whereas CBSEMdetermines the
model parameters to reproduce an empirically observed covariance
matrix. PLS is therefore better suited for situations in which the
researcher wants to predict the latent variables in themodel or identify
relationships between them (e.g., in the early stages of theory
development), while CBSEM should be the method of choice when
the focus lies on confirming theoretically assumed relationships. Third,
the PLS parameter estimation process continuously oscillates between
estimating case values for the block variables and model parameters
that depend on these case values. Block variables are hereby assumed to
beaweighted average of all indicators that belong to the sameconstruct.
Because this basic approach is identical regardless of the type of
operationalization used (reflective vs. formative), PLS can deal with
an almost unlimited number of formative indicators. In contrast, CBSEM
may result in implied covariances of zero among some indicators and/
or equivalent models when formative measurements predominate
(MacCallum & Browne, 1993). Furthermore, because all block variables
are assumed to be linear combinations of their indicators, PLS does not
suffer from improper solutions and factor indeterminacy, as sometimes
occurs in the context of CBSEM (e.g., Bollen, 1987; Chen et al., 2001;
Krijnen, Dijkstra, & Gill, 1998).

With respect to the use of CBSEM and PLS analysis in management
research, the former approach easily dominates the latter. Yet, in
recent years, interest in PLS has increased considerably, a phenom-
enon that we document in Table 1, in which we list all articles in eight
leading marketing journals (Advances in Consumer Research, Interna-
tional Journal of Research in Marketing, Journal of Consumer Research,

Journal of Marketing, Journal of Marketing Research, Journal of Retailing,
Management Science, and Marketing Science) that have used PLS and
been published in the past 25 years.4 Two points emerge. First, it
seems that PLS has prompted increasing interest among researchers
in recent years. Of the 31 articles in Table 1, more than 50% (16) have
appeared since 2003. Second, in each of these articles, one or several
of the aforementioned differences between PLS and CBSEM are listed
as reason(s) for the authors' methodological choices. Specifically,
most articles mention the lack of assumptions regarding indicator
distribution and measurement scales (19) for choosing PLS, followed
by a focus on prediction and theory development (15) and the
appropriateness of models with many formative indicators (12). The
suitability of small sample sizes (11) and the nonexistence of improper
solutions and factor indeterminacy (3) rank fourth and fifth, respec-
tively. Thus, there seems to be at least an implicit agreement about the
factors that should drive the choice between CBSEM and PLS. Yet,
despite this agreement, there are to our knowledge no quantitative
guidelines that help marketing researchers to make an unambiguous
choice between these two approaches.

This lack of unambiguous quantitative guidelines is at least partly
caused by the fact that previous simulation studies focusing on CBSEM
and/or PLS frequently either include only one of these two approaches
or only consider on a limited set of design factors. This can be seen in
Table 2, where we provide an overview of the major simulation
studies that have investigated the performance of CBSEM and/or PLS.
Three results are particularly interesting. First, most studies, and
especially the ones published by marketing scholars (e.g., Babakus,
Ferguson, & Jöreskog, 1987; Gerbing & Anderson, 1985; Sharma,

Table 1
Articles published in the past 25 years using PLS and reasons provided for methodological choice.

Article No assumptions about
indicator distribution/
measurement scale

Suitability for
small sample
size

Focus on prediction
and theory
development

Suitability for
unlimited number of
formative indicators

Lack of improper
solutions/factor
indeterminacy

Fornell and Robinson (1983) Yes Yes
Fornell, Robinson, and Wernerfelt (1985) Yes
Mayo and Qualls (1987) Yes Yes
Qualls (1988) Yes Yes Yes
Zinkhan and Fornell (1989) Yes Yes Yes
Fornell, Lorange, and Roos (1990) Yes Yes
Barclay (1991) Yes
Alpert, Kamins, and Graham (1992) Yes
Fornell (1992) Yes Yes
Graham, Mintu, and Rodgers (1994) Yes Yes Yes
Green, Barclay, and Ryans (1995) Yes Yes Yes
Fornell et al. (1996) Yes Yes
Smith and Barclay (1997) Yes Yes
Dawes, Lee, and Dowling (1998) Yes Yes
Sirohi, McLaughlin, and Wittink (1998) Yes Yes Yes
Ahuja, Galletta, and Carley (2003) Yes Yes Yes
Arnett, Leverie, and Meiers (2003) Yes Yes Yes Yes
Vanhamme and Snelders (2003) Yes Yes
White, Varadarajan, and Dacin (2003) Yes Yes Yes
Anderson, Fornell, and Mazvancheryl (2004) Yes Yes
Cotte and Wood (2004) Yes
Dellande, Gilly, and Graham (2004) Yes
Gray and Meister (2004) Yes
Reinartz, Krafft, and Hoyer (2004) Yes Yes
Grégoire and Fisher (2005) Yes
Hennig-Thurau et al. (2006) Yes
Ulaga and Eggert (2006) Yes Yes
Venkatesh and Agarwal (2006) Yes Yes
Hennig-Thurau, Henning, and Sattler (2007) Yes
Mitchell and Nault (2007) Yes
McFarland, Bloodgood, and Payan (2008) Yes

4 No articles using PLS appeared in Marketing Science, and only one appeared in the
International Journal of Research in Marketing (Bagozzi, Yi, & Singh, 1991), the latter
being methodological in nature. Table 1 includes only articles where a justification for
the choice of PLS over CBSEM has been given; it excludes all articles that are purely
methodological.
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Durvasula, & Dillon, 1989), focus exclusively on the behavior of
CBSEM estimates under various conditions. This is consistent with our
previous observation that within the marketing literature, the use of
CBSEM is far more frequent than the use of PLS, making a focus on
CBSEM more appropriate, at least historically. Yet, while such studies
provide interesting and relevant guidelines, they are only of limited
usefulness when researchers want to compare the performance of
CBSEM and PLS in different situations in order to choose the most
appropriate approach for their research setting. Second, three studies
investigate the performance of PLS (Cassel, Hackl, & Westlund, 1999;
Chin & Newsted, 1999; Hui &Wold, 1982), but their focus is limited to
a subset of two relevant design factors (sample size plus either
number of indicators per construct or indicator distribution) and
therefore does not allow one to balance competing objectives and
requirements with regard to the choice between CBSEM and PLS.
Third, only two studies (Areskoug, 1982; Goodhue, Lewis, &
Thompson, 2006) include a simultaneous investigation of CBSEM
and PLS. Yet, they equally only focus on a small subset of design
factors and rely on relatively simple model structures that are not
representative for the type of structural equation systems usually
analyzed within the marketing discipline.

In summary, no previous research has empirically compared the
performance of CBSEM and PLS along a large set of relevant design
factors, which makes the relative performance of both approaches in
many cases unclear. This lack of clear evidence makes it difficult for
researchers to choose between CBSEM and PLSwhen some arguments
favor one method whereas others suggest the other. Our study
intends to provide a contribution in this area. Specifically, our
objectives are twofold. First, we investigate the relative performance
of ML-based CBSEM and PLS given a set of conditions, characterized by
a full-factorial design of four factors that have previously been shown
to have an impact on the performance of structural models5: number
of indicators per construct, sample size, distribution, and indicator
loadings. Second, we identify a set of rules that researchers can follow
when choosing between ML-based CBSEM and PLS analysis. For the
latter question, we focus on three different questions: First, does the
approach converge to a proper solution? Second, what is the degree of
parameter accuracy between the approaches and the relative impor-
tance of the different design factors in driving parameter accuracy? And
finally, is the approach able to identify true relationships among the
variables in the structural equationmodel—or, to put it differently, does
it have low Type II error/high statistical power? We analyze these

questions using a Monte Carlo simulation with 48,000 runs (240
scenarios with 200 replications each). For data generation, we use
Mattson's method (Mattson, 1997; Reinartz, Echambadi, & Chin, 2002),
which accounts substantially better for the non-normal distributions of
latent variables than do traditional approaches recommended by, for
example, Fleishman (1978) and Vale and Maurelli (1983).

Our results provide evidence that justifying the choice of PLS over
ML-based CBSEM due to a lack of assumptions regarding indicator
distribution is often inappropriate. Although PLS does not build on any
distributional assumptions, ML-based CBSEM behaves robustly if those
assumptions are violated, such that this difference seems to be
irrelevant in many applications. Nevertheless, PLS is the preferable
approach when researchers focus on prediction and theory develop-
ment, as our simulations show that PLS requires only about half asmany
observations to reach a given level of statistical power as doesML-based
CBSEM. Furthermore, choosing PLS over ML-based CBSEM when the
sample size is limited appears sensible. The absolute relative error of
parameters increases less quickly with a decrease in sample size for PLS
than it does forML-basedCBSEM, and the negative effects of low sample
sizes can easily be compensated for by increasing the number of
indicators per construct or by using indicatorswith better psychometric
properties (i.e., higher loadings). Finally, PLS should be the preferred
approach when the researcher wants to avoid improper solutions,
though we recognize that improper solutions are a relatively rare
phenomenon in structural equation models with average complexity,
affecting only a bit more than 1% of all our simulations.

2. Theoretical background

As stated in the previous section, the objective of our analysis is to
compare the performance of ML-based CBSEM and PLS in a set of
conditions, characterized by a full-factorial design of four factors (i.e.,
number of indicators per construct, sample size, distribution, and
indicator loadings). Therefore, we first need to review prior studies
that have investigated the behavior of either approach along these
factors.

2.1. CBSEM

As noted previously, CBSEM and PLS analysis are essentially two
different approaches to the same problem. Both start from the same
set of theoretical and measurement equations but differ in how they
approach the parameter estimation problem. Assume a structural
equationmodel with a set of latent exogenous variables (ξi) measured
by indicators xi and associated measurement error δi, and a set of
latent endogenous variables (ηj) measured by indicators yj and

Table 2
Overview of Monte Carlo simulation studies focusing on CBSEM and/or PLS.

Article Estimation technique Design factor Analysis focus

CBSEM PLS Sample
size

Number of
indicators

Indicator
distribution

Indicator
loadings

Parameter
bias

Proper
solutions

Statistical
Power

Areskoug (1982) Yes Yes Yes Yes No No Yes No No
Hui and Wold (1982) No Yes Yes Yes No No Yes NA No
Gerbing and Anderson (1985) Yes No Yes Yes No Yes Yes No No
Balderjahn (1986) Yes No Yes No No Yes Yes Yes No
Babakus et al. (1987) Yes No Yes No Yes Yes Yes Yes No
Sharma et al. (1989) Yes No Yes No Yes No Yes Yes No
Marsh et al. (1998) Yes No Yes Yes No No Yes Yes No
Cassel et al. (1999) No Yes Yes No Yes No Yes NA No
Chin and Newsted (1999) No Yes Yes Yes No No Yes NA No
Chen et al. (2001) Yes No Yes No No No No Yes No
Goodhue et al. (2006) Yes Yes Yes No No No Yes No Yes
Current study Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: Does not include simulation studies that are focused on the relative performance of different fit indices (e.g., Bearden, Sharma, & Teel, 1982; Curran, West, & Finch, 1996; Hu &
Bentler, 1998) or on the analysis of specific issues, such as the estimation of interaction effects (e.g., Chin et al., 2003), between-group differences (e.g., Qureshi & Compeau, 2009),
measurement model misspecification (e.g., Jarvis, MacKenzie, & Podsakoff, 2003) and item parceling (e.g., Bandalos, 2002; Kim & Hagtvet, 2003; Nasser & Wisenbaker, 2003).

5 Since our theoretical model includes only reflective indicators, our PLS analysis
relies on the Mode-A estimation mode.
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associated measurement error εj. If all latent variables in the model
are assumed to be measured by reflective indicators, this structural
equation model results in the following set of theoretical and
measurement equations that describe the relationships of the
structural and measurement model, respectively:

η = Bη + Γξ + ζ; ð1Þ

x = Λxξ + δ; and ð2Þ

y = Λyη + ε: ð3Þ

Starting with this set of equations, covariance-based approaches
such as LISREL estimate a vector of model parameters θ, so that the
resulting covariancematrix predicted by the theoreticalmodelΣ=Σ(θ)
is as close as possible to the sample covariancematrix S. This estimation
is usually conducted using maximum likelihood, with the likelihood
function F=log |Σ| − log |S|+tr (SΣ−1)−k, where |A| denotes the
determinant of A, tr (A) is the sum of the diagonal elements of A, and k is
the total number of manifest variables (indicators). As discussed, for
example, by Long (1983), this likelihood function depends only on the
vector of independent parameters θ, which consists of the free and
constrained elements of Λx, Λy, B, and Γ, as well as Φ, Ψ, Θδ, and Θε,
which are the covariance matrices of ξ, ζ, δ, and ε, respectively. If
determined using ML estimation, the estimated vector of the model
parameters resulting from CBSEM is asymptotically efficient within the
class of consistent estimators and can be considered optimal in that it is
the most precise for large samples (Godambe, 1960).

2.1.1. Number of indicators per construct
As Long (1983) notes, CBSEM requires a minimum number of

indicators to ensure model identification because the sample
covariance matrix S must include at least as many non-redundant
elements as the number of parameters to be estimated by the model.
Baumgartner and Homburg (1996) go even further and state that
every latent variable should be measured using at least three to four
indicators to ensure meaningful results. Furthermore, the general
consensus seems to be that an increase in the number of indicators is
associated with positive effects. For example, Velicer and Fava (1987)
show that more indicators decrease the risk of improper solutions,
and Marsh, Hau, Balla, and Grayson (1998) suggest that more
indicators per factor lead to more proper solutions, more accurate
parameter estimates, and greater reliability. These findings, however,
are true only up to a certain limit, because too many indicators lead to
excessive power for the goodness-of-fit tests (MacCallum, Browne, &
Sugawara, 1996), which in turn may significantly limit the usefulness
of CBSEM (Haenlein & Kaplan, 2004).

2.1.2. Sample size
Sufficient sample size is necessary for both ML- and GLS-based

CBSEM to ensure model identification because CBSEM requires the
sample covariance matrix S to be positive-definite, which is only
guaranteed when the sample size exceeds the number of indicators
(Long, 1983). Additionally, a minimum sample size is required to
generate results of sufficient accuracy due to the asymptotic property of
ML estimation. Consistent with this thinking, Gerbing and Anderson
(1985) show that the standard error of model estimates decreases with
increasing sample size. As a rule of thumb, sample size should exceed
200 cases in most situations (Boomsma & Hoogland, 2001), and several
strategies have been recommended if the available sample size falls
below this threshold, including item parceling (e.g., Marsh et al., 1998;
Nasser & Wisenbaker, 2003) or the use of alternative estimation
techniques such as unweighted least squares (Balderjahn, 1986). Yet
these strategies can be associated with significant risks (e.g., Kim &
Hagtvet, 2003) or may not be applicable in all situations.

2.1.3. Distribution of indicators
As already highlighted by Jöreskog (1967), ML-based CBSEM requires

that the observed variables have multinormal distribution. In reality,
however, it is unlikely that empirical research will achieve this goal
(Micceri, 1989). Therefore, several authorshave investigated thebehavior
of ML-based CBSEMwith non-normally distributed indicators, and it has
been shown that in this case, standard errors in CBSEM tend to be inflated
(Babakus, Ferguson, & Jöreskog, 1987). As with responses to the problem
of limited sample size, item parceling (Bandalos, 2002) and alternative
estimation techniques (Sharma, Durvasula, & Dillon, 1989) have been
recommended as cures for non-normally distributed input data.

2.1.4. Indicator loadings
Badly operationalized constructs represent a problem for any type

of empirical analysis, as they hinder the construction of theoretical
knowledge. Therefore, a set of items used for construct operationa-
lization should be both reliable and valid (Churchill, 1979). Construct
reliability can be expressed as a function of indicator loadings, and
higher average loadings coincide with higher reliability (Gerbing &
Anderson, 1988). Because reliability pertains to the share of variance
caused by (undesired) random error, high loadings are generally
preferred over low ones. With respect to variability in the loadings of
indicators that belong to the same construct, the case becomes less
clear. Assuming constant average loadings (i.e., λ1+λ2=2λ

_
for two

indicators), the average variance extracted (Fornell & Larcker, 1981),
which is a measure of construct validity, will be minimal if the
loadings are equal for all indicators of the same construct. Therefore,
unequal loadings should be preferred over equal ones because they
lead to higher validity. This statement also fits with the opinion that
an overly high degree of item homogeneity should be avoided because
it may indicate item redundancy (Boyle, 1991).

2.2. PLS

Developed by Herman Wold (who was Jöreskog's doctoral
advisor), PLS analysis differs from CBSEM in that it works not with
latent but with block variables, which are derived as weighted
composites of their associated observed variables and are, hence,
considered as observable themselves (Rigdon, 2005). The PLS
estimation approach essentially consists of an iterative sequence of
OLS regressions that starts with an outside approximation, during
which the latent variables of the model are approximated by a linear
combination of their indicators. For this process, a set of weights is
determined in a manner similar to principal component analysis for
reflective and regression analysis for formative indicators. In the next
step, the inside approximation, alternative case values are determined
as weighted means of those block variables that are adjacent within
the structural model. Different ways to define adjacency associated
with different weighting schemes are available (e.g., centroid, factor,
path), but it has been shown that the choice among them has only a
minor impact on the final result (Lohmöller, 1988). Using these new
case values, the initial weights are modified, and the process of
outside and inside approximation restarts and is repeated until the
case values converge.

2.2.1. Number of indicators per construct and sample size
PLS analysis works not with latent variables but with block

variables, which are defined as linear combinations of sets of
indicators that usually involve measurement error. The block
variables are therefore not free of error themselves. Hence, the scores
determined for each block variable and each case, as well as the
associated parameter estimates, must be considered inconsistent.
They converge to their true population values only when both the
number of indicators per construct and the sample size increase to
infinity (Hui & Wold, 1982; Schneeweiss, 1993)—a property referred
to in the literature as “consistency at large.” In real-life situations, PLS
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therefore tends to underestimate the parameters of the structural
model and overestimate those of the measurement model (Dijkstra,
1983). As with CBSEM, increasing sample size can be expected to
decrease parameter variance. However, given a certain number of
indicators, even an unlimited increase in sample size will not result in
unbiased estimates, and given a certain sample size, any increase in
the number of indicators per construct can only partially decrease the
variation in parameter estimates. In turn, PLS analysis is particularly
suited to cases in which CBSEM reaches its limits, such as when the
number of indicators per latent variable becomes excessively large (as
is the case, for example, in functional magnetic resonance imaging
(fMRI) studies; see Haenlein & Kaplan, 2004) or when the sample size
is small. For example, a Monte Carlo simulation carried out by Chin
and Newsted (1999) shows that PLS can glean meaningful informa-
tion from sample sizes as low as 20.

2.2.2. Distribution of indicators
As a limited-information approach, PLS only builds on mild

statistical assumptions regarding the properties of the indicators
and is therefore often described as a “soft modeling” technique to
differentiate it from the “hard modeling” CBSEM approach. Specifi-
cally, PLS does not impose any requirements regarding the distribu-
tion or measurement scale of indicators used (Dijkstra, 1983). The
only characteristic that must be fulfilled is that the systematic portion
of all linear OLS regressions must be equal to the conditional
expectation of the dependent variables (Wold, 1975). This condition,
which is often referred to as a “predictor specification”, implies that
the inner model is a causal chain system with uncorrelated residuals
and that the residual that belongs to a given endogenous latent
variable is uncorrelated with the corresponding predictor latent
variables. The stability of PLS parameter estimates in the presence of
non-normally distributed data has also been confirmed in a Monte
Carlo simulation carried out by Cassel, Hackl, and Westlund (1999).

2.2.3. Indicator loadings
With respect to indicator loadings, the same points that we

discussed with regard to CBSEM apply. Nevertheless, PLS can be
expected to be more robust in the presence of inappropriately
operationalized constructs, as the simultaneous estimation approach
of CBSEM implies that one weak construct will likely influence all
parameter estimates and latent variables estimates, while in PLS, such
negative effects likely are limited to the construct itself and variables
in its direct proximity.

3. Study design

Because ML-based CBSEM results in asymptotically efficient and
optimal parameter estimates but relies on comparatively strong data
assumptions, whereas PLS relies only on the mild condition of
predictor specification but suffers from the problem of consistency
at large, we argue that it is sensible to compare the relative efficacy of
these two approaches within a set of conditions in which we expect
one or the other approach to reach its limits. Such a comparison,
which subsequently provides the basis for identifying a set of rules
researchers can follow when choosing between ML-based CBSEM and
PLS analysis, is the main objective of our manuscript.

3.1. Design factors

We define the number of indicators per construct on four levels
(M=2, 4, 6, 8), sample size on five levels (N=100, 250, 500, 1000,
10,000), and the distribution of indicators on three levels (skewness/
kurtosis=0/0, 1/6, 2/12.8 for the independent latent variable).
We specify the measurement model as depicted in Fig. 1. With
respect to indicator loadings, we consider three different cases
of equal standardized loadings (low: λ1= λ2= .5; medium:

λ1=λ2=.7; high: λ1=λ2=.9), as well as one case of unequal
standardized loadings (λ1=.5, λ2=.9).6 These four design factors and
their associated levels span a space of 240 scenarios (4×5×3×4), for
each of which we carried out 200 replications. These simulations build
on the theoreticalmodel visualized in Fig. 1, whichmirrors the structure
of a customer satisfaction index model (e.g., Fornell et al., 1996). We
chose this type of model because it reflects the typical degree of
complexity found for structural equation models within the marketing
discipline. Additionally, there appears to be some debate about the
preferablemethodof parameter estimation in this context.While theUS
customer satisfaction index literature has estimated the model using
PLS (Fornell et al., 1996), some European modifications have applied
CBSEM (e.g., Bruhn & Grund, 2000). Our population model consists of
one exogenous (ξ) and five endogenous (η1 to η5) latent variables. The
nine path coefficients γ1 to γ3 and β1 to β6 are assumed to have
theoretical values of either 0.50, 0.30, or 0.15, to represent strong,
medium, and weak population effect sizes, respectively (Cohen, 1988).

3.2. Data generation process

Generally, researchers can choose between two differentmethods of
generatingdata forMonteCarlo simulations in theSEMcontext. Thefirst
method starts by calculating the covariance matrix of the observed
indicators implied by themodel and subsequently generates data froma
multivariate distribution with the same covariance matrix. Fleishman
(1978) and Vale and Maurelli (1983) have proposed approaches
consistent with this method, which have been applied previously
(e.g., Sharma, Durvasula, & Dillon, 1989). This technique is appropriate
when the latent variables are assumed to be normally distributed, as the
linearity inherent in themodel implies that the indicators will also have
a normal distribution. It becomes, however, less appropriate when this
assumption is not met. In these situations, another technique proposed
by Mattson (1997) and later applied by Reinartz, Echambadi, and Chin
(2002) is preferable. This method generates data first for the latent
variableswithin the structuralmodel and subsequently for the observed
indicators according to the relationshipsdefined in themodel.Mattson's
approach has two advantages over the traditional technique described
above. First, it is conceptually more satisfying because the data-
generation process follows the theoretical model and the underlying
relationships embedded in it. Second, it allows for complete control of
the common and specific distributional characteristics of the latent and
manifest variables. It takes account of the distributional characteristics
of the latent independent variables and the latent dependent error
terms, and ensures that the error terms influence only the distributional
characteristics of the related indicators. Mattson's approach is currently
the only one that enables researchers to control the skewness and
kurtosis of both latent and observable variables simultaneously. To the
best of our knowledge, this research represents the first timeMattson's
approach has been applied in the context of a Monte Carlo simulation
other than in the general analysis carried out by Reinartz, Echambadi,
and Chin (2002).

3.3. Dependent variables

For each of the 48,000 replications, we calculate the relative error
(RE) for the nine parameters of the structural model (γ1 to γ3 and β1

to β6), defined as:

REð ˆθÞ = θ̂� θ
θ

ð4Þ

6 The error variance of each indicator can be determined as one minus the
respective squared loading. The AVE is equal to the average of squared loadings and
hence is 0.25 for low equal loadings, 0.49 for medium equal loadings, 0.81 for high
equal loadings, and 0.53 for unequal loadings.
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where θ represents the theoretical value assumed for the respective
parameter and θ̂ is equal to the estimated value of the same parameter
in a given replication.7 All simulations have been conducted within
the R computing environment, Version 2.7.0 (R Development Core
Team, 2008) using the SEM package (Fox, 2006) and a proprietary
implementation of the PLS algorithm in the form as described by
Tenenhaus et al. (2005).8

4. Analysis and results

The objectives of our Monte Carlo simulation are threefold. First,
we are interested in the conditions that must be fulfilled so that ML-
based CBSEM converges to a proper solution.9 Second, we want to
compare ML-based CBSEM and PLS with respect to their parameter
accuracy and identify the relative importance of different design
factors in driving parameter error. Third, we intend to identify the
statistical power of ML-based CBSEM and PLS—that is, their ability to
detect true relationships among latent variables.

4.1. Proper solutions in ML-based CBSEM

In line with a previous research, we define improper solutions as
those estimates that would be impossible (or implausible) for the
corresponding parameters (e.g., Bollen, 1987; Chen et al., 2001) and
consider an ML-based CBSEM solution as proper if the iteration
process converges to some solution and all variance estimates for that
solution are positive. Table 3 shows the frequency of occurrence of
proper solutions, convergence problems, and inadmissible solutions
by design factor. Overall, 98.9% of our simulations resulted in proper
solutions for ML-based CBSEM. For almost all scenarios, it is possible

to achieve a proper solution with a probability greater than 0.90. Only
in the worst case, i.e., 2 indicators per construct, low equal loadings,
and 100 observations, is the probability of achieving a proper solution
substantially lower, about 0.53. In order to investigate the extent to
which the design factors included in our Monte Carlo simulation
influence the probability of achieving a proper solution, we conducted
a logistic regression analysis in which wemodeled the properness of a
solution as a function of indicator loadings, the logarithm of the
sample size, the number of indicators, and their distribution.10 Our
model significantly explains the occurrence of proper solutions and
results in acceptable pseudo-R2 statistics (Nagelkerke's R2: 0.5123;
McFadden's R2: 0.4973). Based on this analysis, the occurrence of
proper solutions is significantly influenced by the sample size,
indicator loadings, and number of indicators, but not by the
distribution of indicators. Improper solutions are more likely in case
of smaller sample size and low equal indicator loadings. Moreover, the
influence of the number of indicators is nonlinear. While decreasing
the number of indicators from four to two makes improper solutions
significantly more likely, an increase in indicators from four to six or
eight does not result in significantly more proper solutions.

Previous research (Boomsma & Hoogland, 2001) has investigated
the minimum sample size necessary to achieve a proper solution as a
function of the number of indicators per construct but has not
considered indicator loadings. The well-known rule of thumb that
ML-based CBSEM requires at least 200 observations to avoid problems
of non-convergence and improper solutions emerged from this prior
work. On the basis of our findings, we confirm that this rule is true on
average but that wide variations depend on indicator loadings (see
Table 4). Based on our analysis, the minimum sample size ranges from
as low as 100 (medium or high equal loadings) to a maximum of 500
(low equal loadings and two indicators per construct). Note that if the
number of indicators is low, it does make a difference whether there
are medium equal or medium unequal loadings. In this case,
researchers are well advised to take indicator loadings into account

Fig. 1. Theoretical model.

7 For some analyses on an aggregate level, we also used the absolute relative error
(ARE), equal to the absolute value of RE, in order to avoid a canceling-out of positive
and negative errors.

8 The respective R codes used for data generation and the estimation of the PLS
model are available from the third author upon request.

9 PLS, as a limited information approach that works with block instead of latent
variables, does not suffer from the problem of improper solutions. 10 Details on this analysis are available upon request.
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when evaluating whether their sample size is sufficient for ML-based
CBSEM.

4.2. Overall comparison of parameter accuracy in ML-based CBSEM and
PLS

To explore the overall performance of ML-based CBSEM and PLS in
terms of parameter accuracy, we compared the theoretical and
estimated values for the nine parameters of the structural model
across the 240 scenarios analyzed and for an “ideal” case. As can be
seen in Table 5, on average across all 240 scenarios, parameter
estimates do not differ significantly from their theoretical values for
either ML-based CBSEM (p-values between 0.3963 and 0.5621) or PLS
(p-values between 0.1906 and 0.3449). Nevertheless, ML-based
CBSEM emerges as the more precise estimation method, as the
mean parameter estimates are much closer to their theoretical values
for CBSEM than for PLS (absolute difference 0.00–1.03% for CBSEM,
6.10–19.99% for PLS). Therefore, if consistency matters, ML-based
CBSEM should be preferred over PLS.

To further clarify the relative performance of ML-based CBSEM and
PLS in terms of parameter bias, we also compared the absolute relative
error (ARE) for all parameters in an ideal scenario—i.e., the combination
of different design factors for which the highest level of parameter
accuracy can be expected from a theoretical perspective. Using our
review of prior research, we define this scenario as the case with the
maximum number of indicators per construct (M=8), maximum
(asymptotic) sample size (N=10,000), normally distributed indicators
(skewness=kurtosis=0), and high equal loadings (λ1=λ2=0.9). In
such conditions, estimates are virtually identical to their theoretical
values for ML-based CBSEM, which suggests p-values between 0.745
and 0.957, an absolute difference between the theoretical and estimated
parameter values of less than 0.04%, and an ARE between 0.011 and
0.053. In other words, under optimal conditions, parameter estimates
obtainedbyML-basedCBSEMcanbe considered as accurate. For PLS, the
same is not true. Although in general, the ARE is similar to the one for
ML-basedCBSEM(between0.020and0.053), theAREof strong effects is
more than twice as large as in the case of ML-based CBSEM. Moreover,
the difference between the theoretical and estimated parameter values
is significant (p-valuesb .05 for eight of the nine effects) and substantial
(between 0.58% and 3.23%). Thus, even in an ideal case, PLS path
coefficients are biased and differ from the true parameters of the
structural model. Our analysis indicates that, based on an overall
comparison, ML-based CBSEM dominates PLS in terms of parameter
accuracy.

4.3. Relative importance of different design factors in driving parameter
accuracy

After having compared the overall performance of ML-based
CBSEM and PLS in terms of parameter accuracy, we now analyze the
relative importance of different design factors in driving parameter
error (i.e., bias and variation). In order to avoid the problem of
accumulated α errors that would result from a large number of
individual comparisons, we compute the mean absolute relative error
(MARE) defined as the mean ARE across all parameter estimates for
each replication:

MARE =
1
t
∑
t

j=1
j ˆθj � θj

θj j; ð5Þ

where t equals the number of parameters (here: 9), θj represents the
theoretical value assumed for the respective parameter, and θ̂j
represents the estimated value of the same parameter in any given
replication.

In Table 6, we provide the ANCOVA results for a mixed-effects
model explaining parameter accuracy operationalized as log10(MARE)
as a function of the estimation method (ML-based CBSEM vs. PLS), the
four design factors and their interactions.11 This model shows that
parameter accuracy is virtually unaffected by non-normality of the
data. Neither the main effect nor the moderating effects of the
distribution of indicators is significant. As the distribution of
indicators has therefore neither a between-subjects nor a within-
subjects effect, we can conclude that the accuracy of both ML-based
CBSEM and PLS is independent of the distribution of indicators. All
other design factors require a more differentiated assessment.

The between-subjects effects explain the variance in parameter
error that bothML-based CBSEM and PLS share. Here, we note that the
interaction of sample size×indicator loadings is the only relevant
interaction effect (partial η²: 0.0555). All other interaction effects are
either not significant or not substantial (i.e., they have a partial η²
clearly below 0.02). Regarding the main effects, sample size has the
strongest impact on parameter accuracy, contributing by far the most
to explaining the variance in MARE (partial η²: 0.7980). The main
effects of indicator loadings and the number of indicators are
significant but not substantial.

The within-subjects effects describe the differences in accuracy
between ML-based CBSEM and PLS. The most relevant highest-order
within-subjects effects are the two interaction effects method×loa-
dings×sample size and method×number of indicators×sample size.
Both interaction effects subsume several highly significant lower-
order effects. Although the main effect of the estimation method itself
is strong and significant (partial η²: 0.6511), suggesting that the two
methods, ML-based CBSEM and PLS, differ strongly in parameter
accuracy, these substantial interactions prevent a straight preference
for either method. Fig. 2 displays the estimated marginal means of
MARE along both interactions. The clear crossover interactions of

Table 4
Minimum sample size necessary to achieve a proper solution with probability greater
than 0.975.

Number of
indicators per
construct

Psychometric properties of indicators Previous research
(Boomsma &
Hoogland, 2001)

Equal loadings Unequal
loadings

Low Medium High

2 500 100 100 250 NA
4 250 100 100 100 200+
6 250 100 100 100 50+
8 250 100 100 100 50+

11 We take log10(MARE) instead of MARE to avoid floor effects.

Table 3
Occurrence of proper solutions, convergence problems and inadmissible solutions by
design factor.

Design factor Factor
level

Frequency of occurrence

Proper
solution

Gradient not
close to zero

At least one
negative variance

Number of indicators
per latent variable

2 11,635 236 129
4 11,952 39 9
6 11,939 51 10
8 11,953 38 9

Indicator loadings Low equal 11,525 339 136
Medium
equal

11,987 5 8

High equal 11,987 9 4
Unequal 11,980 11 9

Skewness and kurtosis None 15,824 127 49
Moderate 15,825 118 57
High 15,830 119 51

Number of observations 100 9149 322 129
250 9536 36 28
500 9596 4 0
1000 9600 0 0
10,000 9598 2 0
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MARE imply that the priority of methods alters with an increase in
sample size. For small sample sizes, PLS tends to feature a higher level
of accuracy than ML-based CBSEM, while the opposite is true for
medium-sized and large samples. Besides these effects, we also
identify moderate interaction effects of sample size, method and
indicator loadings (Partial η²: 0.2010) and as method and loadings

(Partial η²: 0.1528), indicating that the two methods are not equally
sensitive to the psychometric properties of indicators. In sum, we can
conclude that ML-based CBSEM clearly outperforms PLS in terms of
consistency. While ML-based CBSEM is able to recover the population
parameters on average, PLS path coefficients systematically deviate
from the true parameter values. Moreover, ML-based CBSEM is

Table 5
Theoretical versus estimated parameter values (mean and standard deviation for parameter estimates and ARE).

Parameter Theoretical
value

ML-based CBSEM PLS

Parameter estimate ARE Parameter estimate ARE

μ σ μ σ μ σ μ σ

Average across
240 scenarios

γ1 0.5000 0.5005 0.0638 0.0795 0.0999 0.4079 0.0854 0.1950 0.1583
γ2 0.1500 0.1506 0.1015 0.3912 0.5522 0.1591 0.0550 0.2603 0.2650
γ3 0.1500 0.1485 0.1005 0.3443 0.5746 0.1594 0.0468 0.2252 0.2251
β1 0.5000 0.4990 0.0910 0.1057 0.1482 0.4012 0.0871 0.2093 0.1601
β2 0.5000 0.5027 0.1188 0.1193 0.2055 0.4083 0.0814 0.1945 0.1493
β3 0.3000 0.2991 0.1013 0.1844 0.2829 0.2750 0.0556 0.1468 0.1407
β4 0.5000 0.4986 0.0594 0.0769 0.0905 0.4062 0.0862 0.1983 0.1599
β5 0.5000 0.5000 0.0906 0.1052 0.1475 0.4001 0.0891 0.2130 0.1623
β6 0.1500 0.1488 0.0996 0.3825 0.5429 0.1603 0.0561 0.2613 0.2761

Ideal scenario γ1 0.5000 0.4997 0.0074 0.0120 0.0086 0.4855 0.0072 0.0292 0.0142
γ2 0.1500 0.1504 0.0096 0.0504 0.0396 0.1538 0.0091 0.0525 0.0399
γ3 0.1500 0.1498 0.0075 0.0417 0.0277 0.1534 0.0072 0.0431 0.0307
β1 0.5000 0.4998 0.0085 0.0138 0.0100 0.4839 0.0081 0.0323 0.0162
β2 0.5000 0.5004 0.0083 0.0128 0.0105 0.4851 0.0078 0.0301 0.0149
β3 0.3000 0.2997 0.0077 0.0203 0.0158 0.2982 0.0073 0.0201 0.0149
β4 0.5000 0.4993 0.0068 0.0105 0.0088 0.4851 0.0067 0.0299 0.0130
β5 0.5000 0.5004 0.0076 0.0118 0.0095 0.4844 0.0073 0.0314 0.0142
β6 0.1500 0.1495 0.0099 0.0531 0.0391 0.1530 0.0094 0.0525 0.0401

Notes: In the first case (average across 240 scenarios), mean and standard deviation refers to the parameter estimates and the absolute relative errors across the 240 scenarios; in the
second case (ideal scenario), they refer to the parameter estimates and the absolute relative errors across the 200 runs within the ideal scenario (10,000 observations, 8 indicators,
equally high loadings, 0 skewness and kurtosis). Means and standard deviations are calculated across all Monte Carlo runs for which maximum likelihood based structural equation
modeling provided a proper solution.

Table 6
ANCOVA explaining log10(MARE) by method (ML-based CBSEM/PLS) and design factor.

Effect F df Sig. Partial η²

Between-subjects effects Intercept 5883.3361 1 0.0000 0.1105
# of indicators 57.8819 3 0.0000 0.0037
Distributions 1.6795 2 0.1865 0.0001
Loadings 188.3461 3 0.0000 0.0118
log10(N) 187,146.9764 1 0.0000 0.7980
# of indicators×distributions 1.0163 6 0.4123 0.0001
# of indicators×loadings 67.4141 9 0.0000 0.0126
# of indicators×log10(N) 229.1549 3 0.0000 0.0143
Distributions×loadings 0.0338 6 0.9998 0.0000
Distributions×log10(N) 1.1896 2 0.3043 0.0001
Loadings×log10(N) 927.3734 3 0.0000 0.0555
# of indicators×distributions×loadings 0.0653 18 1.0000 0.0000
# of indicators×distributions×log10(N) 0.9267 6 0.4743 0.0001
# of indicators×loadings × log10(N) 2.3772 9 0.0000 0.0039
Distributions×loadings × log10(N) 0.0269 6 0.9999 0.0000
# of indicators×distributions×loadings × log10(N) 0.0484 18 1.0000 0.0000
Error 47,383

Within-Subjects Effects Method 88,431.9109 1 0.0000 0.6511
Method×# of indicators 1054.4940 3 0.0000 0.0626
Method×distributions 0.4973 2 0.6082 0.0000
Method×loadings 2849.0200 3 0.0000 0.1528
Method×log10(N) 127,735.4391 1 0.0000 0.7294
Method×# of indicators×distributions 0.9632 6 0.4484 0.0001
Method×# of indicators×loadings 16.5847 9 0.0000 0.0031
Method×# of indicators×log10(N) 1261.7954 3 0.0000 0.0740
Method×distributions×loadings 0.1234 6 0.9936 0.0000
Method×distributions×log10(N) 0.2625 2 0.7691 0.0000
Method×loadings×log10(N) 3974.2111 3 0.0000 0.2010
Method×# of indicators×distributions×loadings 0.1636 18 1.0000 0.0001
Method×# of indicators×distributions×log10(N) 1.0405 6 0.3965 0.0001
Method×# of indicators×loadings×log10(N) 33.9025 9 0.0000 0.0064
Method×distributions×loadings×log10(N) 0.1246 6 0.9934 0.0000
Method×# of indicators×distributions×loadings×log10(N) 0.1340 18 1.0000 0.0001
Error(method) 47,383

Notes: Includes only cases in which CBSEM resulted in a proper solution.
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preferable in terms of parameter accuracy as long as the sample size
exceeds a certain threshold. Below this threshold (about 250
observations in our case), PLS provides estimates with a lower MARE.

4.4. Statistical power of ML-based CBSEM and PLS

The statistical power of a significance test refers to the probability
of rejecting a false H0, given a certain population effect size, sample
size, and significance criterion. If β is the probability of a Type II error
(i.e., failure to reject a false H0), power can be expressed as 1–β (e.g.,
Cohen, 1992). Sufficient statistical power is crucial, especially in the
early stages of theory development, when the focus lies on identifying
potentially significant relationships that could exist rather than
confirming the significance of relationships whose existence can be
assumed based on ample prior research. One of the main reasons
provided for the methodological choice of PLS rather than ML-based
CBSEM is its focus on prediction and theory development (see
Table 1). Therefore, an implicit understanding seems to exist that
statistical power can be expected to be higher in PLS than inML-based
CBSEM.

To verify this implicit belief, we determined the share of (proper)
solutions for ML-based CBSEM and PLS in which the relationships
between the latent variables specified in our structural model (i.e., the
nine path coefficients β1 to β6 and γ1 to γ3) have not been rejected.
While CBSEM instantly provides t-statistics for the path coefficients
that can be used to perform such a significance test for the parameter
estimates, we used bootstrapping (without sign correction) with 200
resamples to obtain standard errors for the PLS path coefficient
estimates. We analyzed the statistical power of the two methods on
an aggregated level and determined the frequency with which each
method detects a significant (pb0.05) effect for all 240 scenarios. We
hereby distinguish between three groups of effects, depending on the
population effect size: strong effects (γ1, β1, β2, β4, β5), medium
effects (β3), and weak effects (γ2, γ3, β6).

Table 7 compares the statistical power of ML-based CBSEM and PLS
for low, medium and high population effect sizes based on three
design factors (i.e., sample size, indicator loadings and number of

indicators).12 As can be seen, the statistical power of PLS is always
larger than or equal to that of ML-based CBSEM. To put it differently,
the minimum sample size necessary to achieve a given level of
statistical power in PLS is always less than or equal to the size required
for ML-based CBSEM, and in many cases, ML-based CBSEM needs
twice as much information as PLS to avoid Type II error. To the best of
our knowledge, ours is the first quantitative study that confirms the
widespread belief that PLS is preferable to ML-based CBSEMwhen the
research focus lies in identifying relationships (i.e., prediction and
theory development) instead of confirming them. Table 7 is one of the
few published power tables for PLS, next to Chin and Newsted (1999)
and Chin, Marcolin, and Newsted (2003). It is an essential tool for
researchers who want to determine the statistical power of their
estimation method given a particular population effect size, sample
size and measurement model quality.

5. Discussion

In our Introduction, we recognized the increasing interest
researchers in marketing have paid to PLS in recent years. Neverthe-
less, there appears to be an implicit agreement regarding the factors
that should drive the methodological choice between the more
traditional ML-based CBSEM and PLS—but no research has until now
compared the performance of the two approaches in different
scenarios. We therefore conducted a set of Monte Carlo simulations
to address this issue. These simulations rely on 240 scenarios, defined
according to a full-factorial design of four design factors (number of

Fig. 2. Mean absolute relative error (MARE) of CBSEM and PLS for different numbers of indicators and loading patterns.

12 With respect to our analysis of power, one could argue that our comparison of ML-
based CBSEM with PLS is inappropriate because the two methods use different ways of
determining the standard error of the estimates: parametric assumptions in the case of
ML-based CBSEM and bootstrap in the case of PLS. However, comparing the two
approaches using the same method in determining the standard error of the estimates
seems inappropriate. On the one hand, it has been shown that parametric assumptions
always lead to higher statistical power than does bootstrapping in the context of ML-
based CBSEM (Nevitt & Hancock, 2001). Additionally, applied research only rarely
relies on bootstrapping in the context of ML-based CBSEM, except for the calculation of
goodness-of-fit measures (Bollen & Stine, 1993). On the other hand, using parametric
assumptions in the context of PLS leads to inflated Type I errors (Goodhue et al., 2006).
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indicators per construct, sample size, distribution, and indicator
loadings) and Mattson's (1997) approach to data generation.
Specifically, our analysis has attempted to answer three research

questions. 1) Which conditions need to be fulfilled so that ML-based
CBSEM converges to a proper solution? 2) What is the difference in
the parameter bias between the two approaches and the relative
importance of different design factors in driving parameter accuracy?
3) What is the ability of ML-based CBSEM versus PLS to detect true
relationships among latent variables?

5.1. Theoretical implications

On the basis of our results, we can evaluate four of the five main
reasons provided for a methodological choice between PLS and ML-
based CBSEM, as cited in Table 1, and develop a set of recommenda-
tions for that choice. Because our population model only includes
constructs measured using reflective indicators, we cannot make any
statement with respect to PLS performance in cases when formative
measures predominate. In addition, we do not discuss reasons that
may favor a particular method other than those that appear in Table 1.
Such reasons might include, for example, the availability of tests to
judge overall model fit and the suitability of an approach to dealing
with multi-level structures, growth modeling, mixtures and/or
equality constraints. Nevertheless, our recommendations should be
useful for practicing researchers, amongwhom there seems to be high
heterogeneity in terms of the reasoning for choosing onemethod over
another but no systematic quantitative and empirical assessment to
help rationalize that choice.

5.1.1. When assumptions regarding indicator distribution are not met
As highlighted above, most authors cite a lack of assumptions

regarding indicator distribution and measurement scale as their main
reason for choosing PLS overML-based CBSEM. Our results indicate that
such a justification is often inappropriate, as ML-based CBSEM proves
extremely robust with respect to violations of its underlying distribu-
tional assumptions. The distribution of indicators impacts neither the
share of proper solutions for ML-based CBSEM nor parameter accuracy
in any significant and substantial manner, even in extreme cases of
skewness and kurtosis. Although PLS does not build on any distribu-
tional assumptions, ML-based CBSEM behaves so robustly in the case
of their violation that justifying the choice of one approach over the
other on the basis of this factor alone is not sufficient.

5.1.2. When the focus is on prediction and theory development
15 of the 30 articles listed in Table 1 justify the use of PLS based on

a focus on prediction and theory development vs. empirical
confirmation of theoretically indicated relationships. Our comparison
of the statistical power of ML-based CBSEM and PLS clearly supports
this statement. The statistical power of PLS is always larger than or
equal to that of ML-based CBSEM, and inmany cases, PLS requires only
half as much information as ML-based CBSEM. With a reasonable
measurement model (e.g., four indicators per construct with at least
medium loadings), PLS can achieve a statistical power of 0.80 for
medium population effect sizes with a sample size as small as 100 and
for weak population effect sizes with about 250 observations. To
achieve similar results, ML-based CBSEM requires 250 and 1000
observations, respectively. However, in these circumstances, PLS
estimates must be expected to be inaccurate by roughly 25% (ARE for
M=4, N=100; medium equal loadings are 0.3035 for small effects
and 0.2412 for medium effects). Although this level of bias is
sufficiently low to reject the null hypothesis that the parameter
value is zero, it may cast doubt on the actual parameter estimate
obtained, which should be interpreted with caution.

5.1.3. When sample size is small
The third most cited reason for using PLS is its suitability for small

sample sizes. Our simulations show that PLS can be a very sensible
methodological choice if sample size is restricted, since already 100
observations can be sufficient to achieve acceptable levels of statistical

Table 7
Statistical power (α=0.05) of CBSEM and PLS.

Design factors Low effect
size
(β=.15)

Medium
effect size
(β=.30)

High effect
size
(β=.50)

Sample
size

Loadings Indicators CBSEM PLS CBSEM PLS CBSEM PLS

100 Low
(.5/.5)

2 0.01 0.24 0.01 0.47 0.16 0.59
4 0.05 0.36 0.09 0.61 0.47 0.86
6 0.07 0.43 0.31 0.79 0.69 0.94
8 0.09 0.47 0.36 0.85 0.80 0.96

Moderate
Equal
(.7/.7)

2 0.09 0.38 0.33 0.76 0.75 0.93
4 0.18 0.44 0.51 0.85 0.96 0.99
6 0.24 0.47 0.80 0.92 0.98 0.99
8 0.27 0.45 0.81 0.95 0.99 0.99

Moderate
Unequal
(.5/.9)l

2 0.09 0.41 0.39 0.84 0.83 0.98
4 0.29 0.44 0.80 0.94 1.00 1.00
6 0.33 0.48 0.90 0.94 1.00 0.99
8 0.36 0.45 0.93 0.95 1.00 1.00

High
(.9/.9)

2 0.28 0.40 0.84 0.93 0.99 1.00
4 0.31 0.41 0.91 0.96 1.00 1.00
6 0.40 0.46 0.94 0.95 1.00 0.99
8 0.39 0.43 0.95 0.96 1.00 1.00

250 Low
(.5/.5)

2 0.05 0.54 0.16 0.90 0.54 0.90
4 0.20 0.74 0.51 0.96 0.95 0.99
6 0.23 0.76 0.80 1.00 0.99 1.00
8 0.34 0.84 0.88 1.00 1.00 1.00

Moderate
Equal
(.7/.7)

2 0.31 0.76 0.78 0.99 0.99 1.00
4 0.45 0.81 0.95 1.00 1.00 1.00
6 0.48 0.77 0.99 1.00 1.00 1.00
8 0.60 0.83 1.00 1.00 1.00 1.00

Moderate
Unequal
(.5/.9)l

2 0.36 0.80 0.88 1.00 1.00 1.00
4 0.62 0.82 1.00 1.00 1.00 1.00
6 0.63 0.77 1.00 1.00 1.00 1.00
8 0.72 0.83 1.00 1.00 1.00 1.00

High
(.9/.9)

2 0.62 0.80 1.00 1.00 1.00 1.00
4 0.72 0.80 1.00 1.00 1.00 1.00
6 0.68 0.75 1.00 1.00 1.00 1.00
8 0.76 0.81 1.00 1.00 1.00 1.00

500 Low
(.5/.5)

2 0.13 0.78 0.31 0.97 0.86 1.00
4 0.33 0.94 0.77 1.00 1.00 1.00
6 0.48 0.97 0.96 1.00 1.00 1.00
8 0.58 0.98 0.99 1.00 1.00 1.00

Moderate
Equal
(.7/.7)

2 0.46 0.96 0.91 1.00 1.00 1.00
4 0.73 0.98 1.00 1.00 1.00 1.00
6 0.79 0.97 1.00 1.00 1.00 1.00
8 0.87 0.98 1.00 1.00 1.00 1.00

Moderate
Unequal
(.5/.9)l

2 0.64 0.97 1.00 1.00 1.00 1.00
4 0.90 0.98 1.00 1.00 1.00 1.00
6 0.91 0.97 1.00 1.00 1.00 1.00
8 0.93 0.98 1.00 1.00 1.00 1.00

High
(.9/.9)

2 0.85 0.97 1.00 1.00 1.00 1.00
4 0.94 0.98 1.00 1.00 1.00 1.00
6 0.93 0.95 1.00 1.00 1.00 1.00
8 0.96 0.97 1.00 1.00 1.00 1.00

1000 Low
(.5/.5)

2 0.29 0.95 0.67 1.00 0.98 1.00
4 0.59 1.00 0.99 1.00 1.00 1.00
6 0.80 1.00 1.00 1.00 1.00 1.00
8 0.87 1.00 1.00 1.00 1.00 1.00

Moderate
Equal
(.7/.7)

2 0.79 1.00 1.00 1.00 1.00 1.00
4 0.95 1.00 1.00 1.00 1.00 1.00
6 0.98 1.00 1.00 1.00 1.00 1.00
8 0.99 1.00 1.00 1.00 1.00 1.00

Moderate
Unequal
(.5/.9)l

2 0.94 1.00 1.00 1.00 1.00 1.00
4 0.99 1.00 1.00 1.00 1.00 1.00
6 0.99 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00

High
(.9/.9)

2 0.99 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00
6 1.00 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00

Notes: Includes only cases in which CBSEM resulted in a proper solution. In case with
10,000 observations, a statistical power of one was obtained for all conditions.
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power, given a certain quality of the measurement model. Although
parameter estimates may be inaccurate in this case, ARE depends
much less on sample size within PLS than it does within ML-based
CBSEM. Whereas sample size is by far the most important factor
driving parameter accuracy in ML-based CBSEM, it plays a less
important role in PLS. Additionally, low sample size in PLS can easily
be compensated for by improving the number of indicators or by
choosing indicators with higher loadings. It can be derived from Fig. 2
that PLS should be the method of choice for all situations in which the
number of observations is lower than 250 (400 observations in the
case of less reliablemeasurementmodels, i.e., low loadings and/or few
indicators), while ML-based CBSEM should be chosen otherwise. In
the case of 100 observations, and if constructs are measured with at
least six indicators with at least medium loadings, the ARE falls
between 0.2420 and 0.2747. In contrast, ML-based CBSEM shows an
ARE between 0.2557 and 0.3178 in the same circumstances. This
advantage of PLS is particularly relevant when researchers plan to use
SEM in cases where the sample sizes required for ML-based CBSEM is
not available. For example, Green, Barclay, and Ryans (1995)
investigate the impact of entry strategy on long-term performance
in the business word processor and graphics markets, where only 39
and 44 companies entered the market in the analysis period.
However, in such situations, researchers must pay particular attention
to including a sufficient number of indicators per construct. For
example, of the eleven articles in Table 1 that cite suitability for small
sample sizes as a reason for choosing PLS, eight are based on sample
sizes less than or equal to 100. Of these eight, only one (Qualls, 1988)
uses constructs operationalized with at least six indicators each. On
the basis of our results, we encourage researchers to include the
number of indicators per construct as a factor when choosing between
PLS andML-based CBSEM, especially in the presence of limited sample
sizes.

5.1.4. To avoid improper solutions
Several authors (Arnett, Laverie, & Meiers, 2003; Reinartz, Krafft, &

Hoyer, 2004; Sirohi, McLaughlin, & Wittink, 1998) have chosen PLS
because it does not suffer from identification and convergence
problems. While this reasoning is true theoretically, we observe that
improper solutions are a relatively rare phenomenon that affects only
1.1% of our simulations. However, especially when indicator loadings
are low, ML-based CBSEM can require significant sample sizes of more
than 500 observations to avoid them.

5.2. Limitations and areas for further research

As with those of any Monte Carlo simulation, our findings are valid
only within the boundaries of the scenarios we investigate, and they
only apply to the theoretical model on which we base our simulations
(Fig. 1). Furthermore, we assume that all indicators in our model are
continuous, which rarely occurs in real life. Such increased precision
of information regarding the latent constructs is likely to influence our
results. In general, however, our approach is substantially more
complex than those applied by other researchers in similar situations,
specifically due to the use of Mattson's (1997) method of data
generation, which gives us confidence in the external validity of our
results. Regarding areas of further research, we believe that an
extension of our study to misspecifiedmodels (see Hu & Bentler, 1998
for a similar analysis in the context of fit indices) and second-order
factor specifications could be very interesting. Furthermore, questions
surrounding PLS regarding prediction and theory development, as
well as its suitability for an unlimited number of formative indicators,
deserve deeper investigation. With respect to the first point, for
example, it would be very interesting to analyze differences in factor
scores derived using PLS and ML-based CBSEM in more detail.
Theoretically, the focus on maximizing explained variance, which
lies at the heart of PLS, should lead to better predictions than the

estimation approach that underlies CBSEM. In turn, many authors
tend to choose PLS over CBSEM, especially when factor scores are of
particular interest, such as in the context of index construction (e.g.,
Arnett, Laverie, & Meiers, 2003; Fornell et al., 1996). Tenenhaus et al.
(2005) suggest, however, that the differences in factor scores between
ML-based CBSEM and PLS are less a question of the estimation
procedure than one of the specific way in which factor scores are
calculated for both approaches. In the specific example they analyze,
factor scores that follow the logic of PLS for their calculation but use
CBSEM estimates as input parameters lead to results that are highly
correlated with traditional PLS factor scores. The question of whether
their finding is idiosyncratic to the example they investigate or can be
generalized to a broader setting seems highly relevant in this context.

With respect to the suitability of PLS formodelswithmany formative
indicators, MacCallum and Browne (1993) highlight several issues that
may occur when formative indicators are predominant in ML-based
CBSEM. Therefore,most recommendations involve combining reflective
and formative indicators in the form of a MIMIC model (Jöreskog and
Goldberger, 1975) to avoid such problems. To our knowledge however,
no study has compared the relative advantages of this approach to the
use of formative indicators only or theperformanceof PLS andML-based
CBSEM in both cases with Monte Carlo simulations. This lack may be
partly caused by the fact that the simulation of formative indicators is a
nontrivial issue. All approaches currently used to generate artificial data
in the SEM context build on the assumption of reflective measurement.
However, formative indicators can be expected to grow in importance
because of their high degree of suitability for modeling managerial
constructs (Jarvis, MacKenzie, & Podsakoff, 2003). Therefore, we
recommenda focus on theoreticalways to simulate formative indicators
in the context of SEM, probably building on Mattson's (1997) approach
and investigating whether the use of a logical flow from latent
constructs to indicators to generate artificial data might be extended
to formative measurements.
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